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ABSTRACT
One of the fundamental issues with lidar-derived evapotranspira-

tion estimates is its reliance on tower-based measurements of Monin–
Obukhov similarity variables, specifically the Obukhov length (L) and
the friction velocity (u*). Our study indicates that L can be derived in
the atmospheric surface layer directly from lidar range-height scans by
estimating the integral length scale (ILS). Data from both three-
dimensional sonic anemometers mounted on towers and lidar data col-
lected during two subsequent field experiments were analyzed using
autocorrelation analysis to estimate the ILS. The ILS values were then
transformed into L values using a power-law similarity model and were
compared to coincident tower-based observations. The comparisons
between tower-based eddy covariance sensors and lidar data show that
the lidar-derived L values are within the expected uncertainty and
variability of standard point sensor measured observations. An addi-
tional model for estimating the friction velocity from the Obukhov
length was also derived, and both L and u* were used to calculate the
latent energy flux from lidarwithout externalmeasurements. The evapo-
rative fluxes from the standard method and the new advanced method
were compared with eddy covariance fluxes, and it was found that the
advanced method is superior.

THE rate and distribution of water use in the land-
scape (evapotranspiration) is a fundamental param-

eter that agronomic and watershed managers require
when attempting to optimize hydrological resources.
Evapotranspiration (ET) couples the soil–water–plant
system to the atmosphere and is therefore a spatially de-
pendent variable. Up to now, however, the measurement
of ET has been made almost exclusively by point sensors
that average this parameter across time and space.
Scanning Raman water vapor lidars have been used to
map the water vapor scalar and flux over various surfaces
for the past decade (Cooper et al., 1992; Eichinger et al.,
2006). The utility of the scanning Raman lidar to derive
maps of ET (latent energy) flux has been dependent
on turbulence parameters measured independently from
tower-based three-dimensional sonic anemometers for
critical variables including the Obukhov length, L, and
the friction velocity, u* (Cooper et al., 2000).
The Obukhov length is used to adjust flux estimates

for stability in the first few meters of the of the atmo-
sphere directly above the crop surface, and u* is the

primary variable of the momentum flux that exchanges
water vapor between the surface and the atmosphere
(Eichinger et al., 2000). Currently, micrometeorological
theory and technique incorrectly assume that L and u*
measurements from point sensors can be applied uni-
formly over an entire crop surface to estimate ET for a
given spatial region. The use of lidar to infer the spatial
variability of ET has been limited due to the require-
ment that sonic anemometers be collocated with the
lidar. Furthermore, the appropriate density of tower-
based observations for spatial variability studies is un-
known, thus it is attractive to explore ways to advance
techniques where lidar can be used to roughly estimate
L and u* independent of point sensors for ET flux
mapping. Our hypothesis is that it should be possible to
estimate L and u* from lidar data without the use of
ancillary tower measurements by calculating the inte-
gral length scale (Wilson et al., 1981). In addition, the
method described here could be applied to other types
of lidars and offers the opportunity to spatially resolve
L and u*, which would improve our understanding of
surface–atmosphere exchange processes.

Fundamental work by Wilson et al. (1981) suggested
thatL is related to simple statistical properties of passive
scalars in the atmosphere, such as the integral time scale
(ITS) and, by extension, the integral length scale (ILS).
The ILS is the radial distance that energy and mass in
the atmosphere are transported downwind by large
coherent eddies (Tennekes and Lumley, 1972) and is the
spatial analog of the ITS. Large eddies are those that are
greater than the ILS and, conversely, small eddies are
equal to or less than the ILS (Frisch, 1995). The ILS is
computed here using a purely statistical property of
the spatial data, the autocorrelation function of space–
concentration transects extracted from lidar-measured
range-height scans. To compute the ILS, the autocorre-
lation function is calculated and then the function is
integrated. Once the autocorrelation-derived ILS is es-
timated, a similarity function is used to relate the ILS
to L, and then a second model relates L to u*, thus
creating spatially resolved turbulence parameters.
Obtaining L and u* values in this way allows estimates
of the water vapor flux from the lidar with little depen-
dency on external point sensors for turbulence and
stability parameters.

LIDAR
The Los Alamos National Laboratory’s Raman lidar

generated volume images from two-dimensional range-
height scans of water vapor. Details on the method and
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operation of the scanning lidar are described in
Eichinger et al. (1999). The radial range of the lidar
extended to .500 m, with a spatial resolution of 1.5 m.
The azimuthal scanning range covered up to 1808 in 108
azimuthal increments, while the elevation scanning
range was 668 from horizontal in 0.258 elevation incre-
ments. Each range-height scan required no more than
43 s to complete with a set of 24 line-of-sight scans,
requiring about 15 min to complete a full set of range-
height scans across the 1808 swath. The vertical scans
acquired lines of sight from below the canopy up to
50 m into the lower atmospheric boundary layer
(ABL). From the two Bosque field experiments, 122
data sets of scans were selected for further processing
because they represent coincident observations with
the eddy covariance sensors. Furthermore, the periods
were convective and unstable, the wind was from a
direction with ample fetch so that the region sampled
is considered homogeneous and advection was mini-
mal, and the periods were during storm-free, clear-
sky conditions.
The absolute accuracy of the lidar was shown to be

60.0034 kg kg21 at the 95% confidence level; differen-
tial precision is on the order of 0.0001 kg kg21 (Cooper
et al.1996; Eichinger et al., 1994). While the lidar scan-
ning rate is modest, it does provide an opportunity to
evaluate some aspects of the turbulent exchange pro-
cess. Horizontal transects parallel to the top of the can-
opy were extracted from these vertical range-height
scans by averaging portions of several lines of sight (4–6)
together for the region of interest (Fig. 1), thereby
ensuring extensive spatial data.

OBUKHOV THEORY
To estimate a flux with the lidar, a Monin–Obukhov

similarity model is used, which uses L to correct the
model profile of moisture for stability and u* is the trans-
port and exchange term. The latent energy flux (LE)
estimates are obtained from lidar-measured profiles of
water vapor mixing ratio with height using a similarity
model (Brutsaert, 1982):

q(z) 5 2
LE

leku*r
3ln(z) 2 cv1 zL 24

1 3qs 2
LE

leku*r
ln(z0)4 [1]

where q(z) is the water vapor mixing ratio at height
z (kg kg21), le is the latent heat of vaporization (J kg21),
k is the von Karman constant, r is the air density
(kg m23), cv is the stability correction factor for water
vapor, qs is water vapor at the surface, and z0 is the sur-
face roughness (m) (see Appendix).
Equation [1] assumes that LE is constant with height,

and thus this model is appropriate for the “constant flux
layer” several meters above the surface. The profiles of
water vapor allow a least squares determination of the
slope of the profile, LE/(leku*r). The method requires a
value of L to determine the slope of the profiles and a

value of u* to obtain the evapotranspiration rate, LE,
from the slope of the water vapor profile. The profile is
constructed with spatially resolved water vapor concen-
trations from a 50- to 75-m2 region, depending on foot-
print requirements (Cooper et al., 2003).

The Monin–Obukhov length (L) is the central micro-
meteorological variable in similarity-based turbulence
parameterization used to describe the degree of atmo-
spheric stability (Monin and Yaglom, 1971), which can
be thought of as the height at which mechanical and
buoyancy forces are approximately equal (by conven-
tion, when L , 0, the atmosphere is considered un-
stable, and when L . 0, the atmosphere is stable) and
calculated as the ratio of surface layer shear forces
to those due to buoyancy (Stull, 1988). The value of L is
given by

L 5 2
ru3

*

kg1w9uv9uvcp 2
[2]

where g is the acceleration due to gravity (m s22), w9uv9
is the time-averaged virtual sensible heat flux (J m22

s21), uv is the virtual temperature (K), and cp is the spe-
cific heat of air (J kg21 K21).

Specific details on the now-standard approach to the
derivation, computation, and validation of the lidar-
derived latent energy fluxes can be found in Eichinger
et al. (2000). By measuring the spatially resolved water
vapor gradient and deriving L and u* from lidar data
alone, the critical parameters for estimating the latent
energy flux (Eq. [1]) would be available independent of
tower-based observations.

METHODOLOGY
The Obukhov length and the characteristic length

scale of turbulent transport appear to be related (Wilson
et al., 1981) and are typically derived from tower-based
sensors collecting time-series data. The characteristic
length scale is derived from the characteristic time scale
with the inclusion of a friction velocity transport esti-
mate. The deviations from the mean of passive scalars in
time or space is thought to represent the passing of a
turbulent event. When evaluating a time series and
using one of the many analysis methods such as eddy
covariance, spectral, etc., information about the fate and
behavior of these structures involved in mass and energy
exchange can be derived. In contrast to time-series
analysis of atmospheric turbulence, spatial-series studies
are relatively rare in the literature. Direct spatial mea-
surements of turbulent length scales have been made
using aircraft observations in at least two experiments
involving scalars and wind in the marine boundary layer,
where the convective structures are somewhat homoge-
neous (Durand et al., 2000; Lenschow and Stankov,
1986). The use of aircraft in the ABL, however, is re-
stricted by the inability to acquire data close to the
ground (Mahrt, 1998). In contrast to the aircraft ap-
proach, multidimensional lidar data offer the ability to
directly observe some of the spatial properties of tur-
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bulent features evolving between the surface and the
first tens of meters of the ABL, and thus offer an ad-
ditional and arguably improved view of the surface–
atmosphere exchange process.
The ILS is derivable from both temporal and spa-

tial series and is used here to determine the charac-
teristic time or space in which turbulent events remain
coherent. The ILS is estimated by integrating a given
variable’s autocorrelation function. Using a similarity
model, the ILS is transformed into L values. Our funda-
mental assumption is that a scalar spatial series, derived
from the lidar at a fixed height parallel to the surface,
will contain within its variations turbulence properties

similar to those seen in the more traditional time-series
measurements such as fast-response hygrometers.

Integral Scales from Autocorrelation
Integral time and length scales were estimated from

moisture observations with both tower-based hygrome-
ter time series and lidar remotely sensed spatial series.
The ILS (L) is usually derived from the ITS (t) by using
a transport term, L5 ût, where û is the mean downwind
component (Tennekes and Lumley, 1972). Because lidar
data is inherently spatial, the mean wind is not required,
allowing the spatial scale to be computed directly from t

Fig. 1. (A) Site map showing the location of the Bosque relative to the state of New Mexico, and (B) an infrared aerial photograph of the Bosque
indicating the location of the lidar and the lidar scanning pattern used to generate horizontal spatial series.
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as the integral of the autocorrelation function of the
water vapor, integrated to infinity (Kaimal and Finnigan,
1994; Pope, 1998). Thus, the integral length scale for
water vapor (Lq) is

Lq 5 #
¥

0
rq(j)dj [3]

where rq is the water vapor density (kg m
23) and j is the

lag in space or time (m or s). The autocorrelation func-
tion for water vapor is

rq(j) 5
qi9qi1j9

s2
q

[4]

where qi is an instantaneous observation of water vapor
at some time (for hygrometer data) and sq

2 is the
variance of q (water vapor) from a temporal or spatial
series. The conditional water vapor estimates are

qi9 ¼ qi 2 q�

qi1j9 5 qi1j 2 q� [5]

The integration of autocorrelation functions for water
vapor across infinite spatial lags is not possible, and it is
assumed here for convenience that the finite sampled
population is adequate. Instead, the lag length (or time)
of the first zero crossing of the autocorrelation function
(jro) is chosen as the integrating limit (Kaimal and
Finnigan, 1994). Further, there is a temporal (t) and spatial
(S) data constraint for estimating the ILS or ITS such that
t .. t (Garratt, 1992) and by extension, S .. L. In
practice, the equation definingL from lidar spatial data is:

Lq lidar 5 #
jro

0
rq(j)dj [6]

whereLq lidar is the integral length scale derived from lidar
data. Autocorrelation functions for water vapor observed
by both the lidar and krypton hygrometer were calculated
for the unstable case. To illustrate the sequence of pro-
cessing steps used to compute the ILS, an example lidar
data set is shown from the raw spatial series to the auto-
correlation plot (Fig. 2A–2D). Lidar range-resolved tran-
sects of water vapor concentration 300 m long, starting
100 m from the lidar and extending 400 m away, were
extracted from several horizontal lines of sight averaged
together at the mean height of 2.7 m above the canopy,
coincident with the tower-based sensors (Fig. 2A). The
spatial series is first normalized by detrending the data
using a least squares linear fit (Fig. 2B), and then a low-
pass filter is applied to smooth the high frequency
components. The data were smoothed with a Savitzky–
Golay technique (Fig. 2C; Press et al., 1989). The nor-
malized and smoothed data were then used to compute
the autocorrelation (Eq. [2]) and the resulting functions
were then integrated up to the first zero crossing (Fig. 2D).

Estimating the Obukhov Length
Wilson et al. (1981) showed that for non-neutral at-

mospheres, the eddy diffusivity could be calculated from
the integral time scale:

K 5 s2
wtq [7]

where K is the eddy diffusivity (m2 s21) and sw
2 is the

variance in the vertical wind (m s21). In particular, for a
passive scalar such as water vapor, the diffusivity could
be related to L and the friction velocity u* as

K 5
ku*(z 2 d)

fw1 zL 2
[8]

where d is the displacement height (m) and fw is the
profile function for momentum. It can be seen from
Eq. [7] and [8] that the diffusivity is a function of L or
the ITS.

The ITS (t) is estimated from point sensor data,
typically as a function of the roughness element length,
such as the height of the canopy above ground, h, or
(z2 d) and the transport velocity or variance such as u*,
su, sv, or sw (Baldocchi 1997, Blackadar 1997). Both
studies used parameterizations for t using the height of
the canopy:

t 5
0:17h
sw

[9]

Under near-neutral conditions, Raupach (1989) sug-
gested that t could be based on a scaled height and the
velocity variance:

t 5
k(z 2 d)

sw
[10]

Monin and Yaglom (1971) showed that the ratio of the
velocity variance to the friction velocity is proportional
to a set of universal similarity functions and can be es-
timated by a similarity function incorporating both the
Obukhov length and the friction velocity (Panofsky and
Dutton, 1984):

sw 5 1:25u*11 2 b1
z
L 2

a

[11]

where b1 is nominally 3 and a is 1/3. By substituting
Eq. [11] into Eq. [10], a stability-corrected similarity-
based ITS is estimated:

t 5
k(z 2 d)

1:25u*11 2 b1
z
L 2

a [12]

By multiplying Eq. [11] by the mean wind, an ILS (L) is
estimated as

L 5 u�
k(z 2 d)

1:25u*11 2 b1
z
L2

a

2
64

3
75 [13]

Equation [13] can be simplified in terms of the number
of required variables by noting that

u�(z) 5
u*

k
ln1 zz0 2 2 cm1 zL 2

� �
[14]
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so that by the substitution of Eq. [14] into Eq. [13], u*
also conveniently drops out:

L5 [ln(z/z0)2cm(z/L)]
z2 d

1:25{12 [b1(z2 d)/L]a}
[15]

This equation can be algebraically solved for L, with the
following result:

L 5
(z 2 d)b1

1 2 1 Lq lidar

C1(z 2 d){ln[(z 2 d)/z0] 2 cm[(z 2 d)/L]}2
a

[16]

where Lq lidar is derived from lidar data and C1, a height-
adjusted profile fitting constant, has been substituted
for the empirically derived constant of 1.25 in Eq. [12]
thru [15]. As used here, C1 is also an empirically derived
function to relate canopy-measurement height geome-
tries across a modest range of values instead of the
standard 1.25 (Panofsky and Dutton, 1984). The value of
1.25 was initially derived from a limited set of experi-
mental observations for “large z/L values” (Merry and
Panofsky, 1976, Panofsky et al., 1977). We added an
empirical height adjustment factor to account for dif-
fering canopy and measurement heights: C1 5 1.25 1
[1.5/ln(z/z0)] for various combinations of instrument and
canopy height and range between 0.1 and 2. The stability

Fig. 2. The processing of a horizontal spatial series from 9 Sept. 1998 at 1208 h illustrating: (A) “raw data,” (B) conditional water vapor mixing ratio
(q) series, (C) smoothed conditional data, and (D) autocorrelation function for the spatial series. jro is the first zero crossing of the
autocorrelation function.
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correction function for momentum, cm, in unstable
atmospheric conditions is given by

cm1 z 2 d
L 2 5 2 ln 11 1 x

2 2 1 ln 11 1 x2

2 2
2 2 arctan(x) 1

p

2

x 5 11 2 16
z 2 d
L 2

1=4

[17]

Equation [16] requires only knowledge of the ILS to
determine L, albeit by an iterative process since c is an
asymptotic function of L. From Eq. [16], lidar data can
be used to directly estimate L without tower-based wind
sensor data through the computation of the ILS.

Estimating the Friction Velocity From Lidar Data
A further extension of the autocorrelation-derived ILS

uses similarity theory to estimate the friction velocity (u*)
from theObukhov length (L). Theu* variable is the critical
transport term in the Monin–Obukhov flux parameteriza-
tion used to estimate ET (Eq. [2]) from the lidar. The
derivation of u* is as follows, by reiterating Eq. [12]:

t 5
k(z 2 d)

1:25u*11 2 b1
z 2 d
L 2

a [18]

and solving for u*, the equation now is

u* 5
k(z 2 d)

t1:2511 2 b1
z 2 d
L 2

a [19]

Further, Wilson et al. (1981) showed that t is related to
L by

t 5 0:5(z 2 d)11 2 b2
z 2 d
L 2

b

[20]

then, by substitution of t with Eq. [19], u* is estimated as a
function of L:

u* 5

kðz2 dÞ

C1 12b1
z2 d
L

� �a

2
64

3
75 0:5ðz2 dÞ112b2

z2 d
L 2

b
" #21

[21]

with b1 and b2 equal to 3 and 6, respectively, and a and b
equal to 1/3 and 1/4, respectively (Stull, 1988). In Eq. [21],
C1 is substituted for the constant 1.25 in Eq. [19].

EXPERIMENTAL OVERVIEW
The data used in this study were obtained from two

separate sites on three different dates, the first site being
a salt cedar (Tamarisk spp.) riparian zone in the south-
west USA on the Rio Grande River (Bosque experi-
ment) where the model relationships were developed
(Cooper et al., 2003) and the second site, where the
method was tested, was over adjacent corn (Zea mays
L.) and soybean [Glycine max (L.) Merr.] fields in Iowa
during the Soil Moisture Experiment (SMEX; Kustas
et al., 2003; Table 1). The riparian zone was located
adjacent to the Rio Grande River at the Bosque Del
Apache Wildlife Refuge in the semiarid south-central
part of New Mexico. The agricultural site was located in
the temperate climate of south-central Iowa.

Bosque
The vegetation at the Bosque consisted almost

entirely of uniformly dense riparian salt cedar. During
the 1999 study period, the salt cedars were actively
growing leaves and standing in several inches of water,
while in 1998 the growing season was near its end, and
the soil was relatively dry. Winds were generally mild, at
,2 m s21 during both periods, typically northerly in the
early morning and periodically reversing direction by
midmorning to become southerly. Since the study site
was located on a floodplain, the surface topography
underneath the salt cedars was relatively flat. The spa-
tial extent of the vegetation in the riparian corridor
varied in width between 300 and 700 m and extended
both north and south for several kilometers; thus, as long
as the winds were from the southern or northern
directions, the fetch at the site was several kilometers
long. Data obtained during rainy periods or during
westerly advective wind conditions were excluded from
the analysis.

Soil Moisture Experiment
The vegetation at the Iowa SMEX site consisted of

a corn field and an adjacent soybean field. The corn
was rapidly maturing while the soybean was still fairly
small and young, thus creating an environment with a
tall closed canopy (corn) and a short, open, soil–canopy
condition (soybean; Table 1). Winds were generally at
4.5 m s21 at 2558. The surface topography had almost no
slope, with crop rows running east–west. Both the corn
and soybean fields were in excess of 1 km in length and
width. Data from periods when rain occurred were not
used in this study.

Table 1. Experimental sites, locations, dates, surface cover, leaf area index (LAI), canopy heights and canopy closure, and instrument heights.

Experiment Location Date Surface LAI Canopy height Instrument height

m
Bosque 1998 34�N, 107�W Sept. 1998 salt cedar 2 5, closed 7.7
Bosque 1999 34�N, 107�W June 1999 salt cedar 1.5 5, closed 7.7
SMEX 41�N, 93�W July 2002 corn 3.4 1.4, closed 3.9
SMEX 41�N, 93�W July 2002 soybean 1.9 0.34, open 1.9
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Micrometeorological Instruments
In the Bosque, two 12-m-tall micrometeorological

towers were positioned between the western edge of the
salt cedars and the Rio Grande, at a distance of about
300 m from the river. The two towers were separated
from each other by 585 m in the north–south direction.
At the Iowa site, four 5-m towers were positioned in the
corn (two) and soybean (two) fields. The heights of the
instruments and the vegetation are given in Table 1. The
towers were instrumented with CSAT-7 three-axis sonic
anemometers (Campbell Scientific, 1998), fine wire
thermocouples, fast-response hygrometers (KH2Okryp-
ton [Campbell Scientific, Logan, UT] or LI-COR 7500
[LI-COR, Lincoln, NE]), and Vaisala HMP45a temper-
ature-humidity probes (Vaisala, Helsinki, Finland). Leaf
area index (LAI) was measured by a Licor 2000 radia-
tive LAI meter. Turbulent fluxes of sensible heat, latent
heat, and momentum were computed using standard
micrometeorological methods with a rotated, resampled
coordinate system from the sensors using eddy covari-
ance, sampled at 20 Hz (Prueger et al., 2000).
The location of the lidar is superimposed on the aerial

photographs of the Bosque and Iowa sites (Fig. 1.). At the
Bosque site, the lidar was situated approximately at the
midpoint between the two towers on the western edge of
the riparian zone at the top of an adjacent 5-m-high levee
(Fig. 1a). At the Iowa site, the lidar was positioned on a
fence line between the corn and soybean fields (Fig. 1b).

DISCUSSION
To compute the ILS from lidar data, 78 range-height

scans acquired from two experiments (Bosque 1998 and
1999) comprised of five separate days (Bosque 1998 had
three andBosque 1999 had two) representing awide range
of unstable conditions were processed using standard lidar
analysis techniques (Eichinger et al., 1999, 2000). The
resultingmodels forLandu* from theBosqueexperiments
were then applied to the maturing corn and young soy-
bean agricultural surfaces at SMEX for independent eval-
uation against eddy-covariance-derived fluxes.
Range-height scans were displayed and prepared

for further analysis by extracting horizontal slices parallel
to the surface at the tower instrument height, creating a
spatial series 300 m long composed of several lines of
sight averaged together. Using several methods to evalu-
ate the spatial source area, Cooper et al. (2003) found
that several 300-m-long transects acquired during a
15- to 30-min period were an adequate spatial sample
for surface layer studies. This analysis suggests that the
assumption of trading space for time is reasonable. Typi-
cally, one or two range-height data files were averaged
together for further processing. In the Bosque case, the
analysis involves relatively short timeperiods for compari-
sons between the lidar-derived products and tower-based
values of L. Thus, the comparisons for the individual val-
ues are primarily for verification of the ILS to L relation-
ship. For the SMEX case, however, multiple range-height
scans for each azimuth scan angle were averaged together
during a 30-min period to create a statistically significant
data set for the computation of L, u*, and LE.

The lidar spatial series were processed using the data
conditioningmethods described above to estimateL from
Eq. [6]. Then, values of L were computed from the lidar-
derivedL values usingEq. [16], andu*was estimated from
Eq. [21]. Coincident with the lidar data, tower-based
three-axis sonic anemometers, operated at 20 Hz, were
also used to measure L and u*. At SMEX, LE was also
derived from the tower measurements with the addition
of a fast-response hygrometer and averaged into 30-min
values. Finally, the lidar-derived fluxes using both the
tower-based micrometeorologically integrated data and
the lidar alone were evaluated against the measurements
made by the tower-based eddy covariance sensors.

Autocorrelation in Time and Space
An example of coincident autocorrelation functions

from the north tower krypton hygrometer and the lidar
are shown in Fig. 3. The data shown were acquired on
12 Sept. 1998 between 1440 and 1444 h, during an un-
stable period with light winds. The time series was 240 s
long from the krypton hygrometer, while the spatial
series from the lidar required approximately 43 s to
acquire (Table 1). Since the scanning period for the lidar
is not instantaneous, there is spatial aliasing in the range-
height scans due to the time required to capture the
data; however, Kao et al. (2002) demonstrated that,
under unstable conditions, the scanning period of the
lidar is short enough to observe the essential spatial and
temporal properties of the vertical eddy structures. They
showed this by using a three-dimensional turbulence
resolving model that simulates both the atmospheric
transport behavior and the lidar scanning patterns used
for observing the microscale structures.

In theory, if Taylor’s frozen turbulence hypothesis
(Tennekes and Lumley, 1972) is valid for the coincident
observations acquired, then the lidar-based spatial anal-
ysis and the tower-based time-series analysis should be
similar. Therefore, we would expect the integral scales
from both techniques to be within the expected mea-
surement uncertainty of the instrumentation, on the
order of610%. To test this hypothesis, the sample coin-
cident data sets from the lidar and tower observations
shown in Fig. 3 were evaluated in greater detail. The
time-series-derived autocorrelation function showed an
jro of approximately 25 s (Fig. 3A) and an integral time
scale of 7.8 s. By multiplying the integral time scale by
the mean wind of 1.2 m s21, the ILS is 9.4 m. The lidar-
derived spatial autocorrelation function dropped zero
at an jro of about 20 m (Fig. 3B) and integrated to an
ILS of 9.8 m. Dividing the ILS by the mean wind speed
produced an integral time scale estimate of 8.1 s
(Table 2). Finally, the lidar-derived L calculated from
Eq. [16] yielded an estimate of 214.2 m, which is within
the measurement uncertainty of the eddy covariance
estimate of 215.4 m. The results from coincident time,
spatial-series, and similarity solutions yielded L values,
integral lengths, and time scales within 610 to 15% and
were thus within the expected measurement uncertainty,
supporting the application of the lidar-based autocorre-
lation technique to L estimation.
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Taylor’s frozen turbulence theory (Tennekes andLumley,
1972) is also invoked to interpret the autocorrelation
functions. The autocorrelation functions are not weighted
for wind direction, thus the implicit assumption is that the
turbulent field is isotropic, and surface–atmosphere eddy

circulation is “spherical.” The spherical assumption is de-
pendent on the variations in wind direction within a
30-min averaging period; wide variations will be closer to
spherical, while a persistent wind direction will limit its
utility. Weighting algorithms for the autocorrelation func-
tions based on the alignment between the lidar scanning
azimuth and the prevailing wind direction will be devel-
oped in future work to account for the eddy structure.

Relationship between the Integral Length Scale
and the Obukhov Length

To characterize the relationship between lidar ILS
and tower-based L estimates across a wide range of un-

Fig. 3. Comparison of coincident autocorrelation functions from (A) the tower-mounted krypton hygrometer and (B) lidar on 12 Sept. 1998 at 1440 h.
The plots show the zero-crossing lag (jro) for each function and their corresponding integral scales.

Table 2. Characteristic scales from the krypton hygrometer and
lidar; L is the Obukhov length, t is the integral time scale, and�
is the integral spatial scale.

Plot Source Start time Duration L (tower) L (Eq. [16]) t �

s m s m
Fig. 3A tower 1440 h 240 215.4 – 7.8 9.4
Fig. 3B lidar 1444 h 43 – 214.2 8.1 9.8
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stable conditions with the analysis described above, data
sets from the Bosque experiments were used, spanning a
range of L values between 21 and 2200 m. A scatter
plot (Fig. 4) shows that, for the unstable case (whenL, 0),
the lidar-derived ILS can be related to L with some
confidence. A model curve from Eq. [16] parameterized
for the Bosque site is also shown in the figure as a dotted
line with 610% limits on either side. The 10% confi-
dence limits were chosen as the expected uncertainty in
estimating L from a sonic anemometer, and linearly
propagated into Eq. [16]. The L values are randomly
distributed about the 610% uncertainty bracket. The
lidar-derived L scatter plot follows the expected decay-
ing power-law curve (Squires and Eaton, 1991). The
uncertainty in the ILS to L relationship appears
relatively constant at 610 to 15% except at the small-
est L values between 0 and 230 m. The minimum lidar-
derived ILS value of 3 m is due to the limited spatial
resolution of the lidar of 1.5 m, and the spatial Nyquist
frequency is 3 m. When L is ,6, the model appears to
overestimate L by upward of 50%.
Least squares regression analysis was used to statis-

tically evaluate the quality of the lidar-derived estimates
using Eq. [16] and the eddy covariance measurements of
L. A scatter plot of eddy covariance L vs. lidar-derived

values is shown in Fig. 4A. The least-squares regression
statistics between the lidar and the eddy-covariance-
measured L values resulted in a linear regression model
y 5 0.89x 2 5.75 with an r 2 of 0.64 and a standard error
of 636 m (Fig. 4A). The lidar-derivedL values generally
underestimated the eddy-covariance-measured L by
approximately 10 to 30% for L values between 230 and
2200 m. The data from Fig. 4A also suggest that for con-
ditions when L is less than 2100, the uncertainty is large.

Friction Velocity Estimates from Lidar
The L values derived from Eq. [16] were used as input

to the u* model. The comparison of the lidar-estimated
u* with coincident values measured by a three-axis sonic
anemometer are shown in Fig. 5. The regression
equation for the comparison is 1.01 x 2 9.3 3 1024 6
0.1 m s21 and an r 2 of 0.65. The modest coefficient of
determination is understandable since the errors and
uncertainties in the L model propagate directly into the
u* model. Even with this important limitation, the
u* model is useful in supporting spatially resolved flux
estimation from the lidar until a better technique
is developed. Thus, with the Obukhov length model
(Eq. [16]) and the friction velocity model (Eq. [21]), it is
now possible to estimate the latent energy flux from

Fig. 4. Relationship between lidar and eddy covariance derived integral spatial scales and the Obukhov length estimated from the Bosque
experiments. The similarity model based on a stability function is shown as a dotted line and the610% uncertainty functions are shown as dashed
lines. Inset A shows statistical analysis of eddy covariance sonic anemometer measured Obukhov length (L) versus lidar-derived values (points),
where the solid line is the unity scale and the least-squares regression line (dotted line with equation) is shown with 695% confidence intervals.

R
e
p
ro
d
u
c
e
d
fr
o
m

A
g
ro
n
o
m
y
J
o
u
rn
a
l.
P
u
b
lis
h
e
d
b
y
A
m
e
ri
c
a
n
S
o
c
ie
ty

o
f
A
g
ro
n
o
m
y
.
A
ll
c
o
p
y
ri
g
h
ts

re
s
e
rv
e
d
.

280 AGRONOMY JOURNAL, VOL. 99, JANUARY–FEBRUARY 2007



lidar data with no additional external measurements
under convective conditions.

Comparison of Latent Energy Flux Techniques
During the SMEX experiment, the lidar was pro-

grammed to collect range-height scans every 108 in azi-
muth continuously. This operation resulted in a rich
data set for estimating the latent energy flux using the
method described in Eichinger et al. (2000, 2006), and
Eq. [2] (called here the micrometeorological integrated
similarity approach or MISA). Further, an advanced
method using the models shown in Eq. [16] and [21] was
used in place of the tower-based measurements of L and
u* to estimate the flux without any other observations
but the lidar (called here the integral scale similarity
approach, ISSA). Histograms of the lidar-derived flux
distribution from the two methods were generated and
compared with the eddy-covariance fluxes. The eddy-
covariance latent energy fluxes were corrected for the
basic micrometeorological corrections outlined in Lee
et al. (2004) (called simply LE) and further adjusted for
closure correction using the Twine et al. (2000) tech-
nique (called LECC). Briefly, the Twine et al. (2000)
closure correction assumes the following: that the en-
ergy budget should be closed, that eddy covariance
always underestimates the fluxes, and that the magni-

tude of the underestimation of sensible heat and latent
energy fluxes are partitioned via the Bowen ratio. It is
thought by the community at large that the actual (true)
latent energy flux resides between the unadjusted and
closure-corrected values. A comparison of flux maps
derived from lidar data using the ISSA method and the
older MISA is shown in Fig. 6. Also shown in the figure
are histograms of the lidar-derived flux distributions
from the corn and soybean fields, as well as the eddy
covariance flux values of LE and LECC superimposed
on the histograms.

The two lidar LE maps show similar spatial properties,
with the high flux patterns somewhat oriented with the
mean wind. The most obvious difference between the two
maps is that the ISSA method shows higher soybean
fluxes. The histograms over the corn from the MISA and
ISSA are roughly the same and the majority of the dis-
tribution is contained within the eddy covariance observa-
tions. In contrast, the soybean flux distributions support
the use of the ISSA over the MISA, as the MISA appears
to underestimate the eddy covariance measurements.
Perhaps the open canopy environment of the soybean
leads to greater L or u* uncertainty, suggesting that more
study is warranted. Since the flux maps derived from the
two analysis techniques appear, in general, to be similar in
structure, the primaryMISA assumption of uniformL and
u* values for subkilometer regions is supported, although

Fig. 5. Scatter plot showing the relationship between sonic anemometer measured and lidar-estimated friction velocity (u*). The dashed line is the
least-squares regression fit, and the solid line is the 1:1 line. The dotted lines are the 95% confidence intervals for the regression line.
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the ISSA appears to be an improvement over MISA
within the uncertainty limits of existing similarity theory.

CONCLUSIONS
The Obukhov length, L, is a characteristic measure

of the effects of stability on energy and mass transfer in
the lower ABL. Traditional methods for estimating L
uses three-axis sonic anemometers to measure the time-
dependent eddy covariance of wind components and
virtual temperature. One of the goals for the scanning
Raman lidar is to map fluxes. The present technique,
however, requires point sensors, such as sonic ane-
mometers, to support the lidar methodology. We have
shown experimentally thatL and u* can be estimatedwith
spatially resolved water vapor observations acquired by

the scanning Raman lidar by a purely statistical property
of the data. The autocorrelation of lidar-measured water
vapor is used to compute the ILS, which is subsequently
scaled to L values using an appropriate similarity
relationship. From the analysis of the micrometeorologi-
cal data across the separate experiments with differing
species and plant–soil–water conditions, the lidar-derived
ILSs are distributed randomly about the Obukhov length
model across a wide variety of unstable conditions from
L , 230 to L , 2200. At L values between 0 and 230,
the uncertainty is higher, due in part to the lidar spatial
Nyquist frequency of at least 3 m, which propagates into
the model as uncertainty in estimating small L values.

The comparisons between the flux maps and the eddy
covariance data over agronomic surfaces suggest that
the ability to spatially resolve turbulence parameters
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such as the Obukhov length and the friction velocity,
along with the gradients of water vapor, has a positive
effect on the quality of lidar-derived fluxes, even with
the higher levels of uncertainty associated with the mod-
els. While the resulting LE flux differences between
the MISA and ISSA methods aren’t dramatic, it is clear
that a method independent of external flux sensors
is preferred. Direct comparison between L values from
the lidar ISSA method and eddy covariance measure-
ments indicates that the methods presented leave room
for improvement. Either the eddy covariance data is
correct and the limits to the similarity framework for
the lidar approach have not been reached, or the vari-
ability observed in both the time and spatial series
expresses the actual properties of the turbulent fields.
If this is the case, then substantial improvements be-
yond what is presented here will be limited until a bet-
ter understanding of turbulent exchange is developed.
Even with the higher uncertainty at low L values, the
relationship between the ILS and L is valid, useful,
and powerful. This work brings the concept of indepen-
dent remotely sensed fluxes much closer to reality with
Obukhov length and friction velocity estimates derived
from the autocorrelation function of spatial-series data.
Future work will evaluate the effect of wind direction
on the autocorrelation functions. In addition, we will
characterize how well this technique operates with other
types of lidars (i.e., elastic-backscatter aerosol systems)
since, in theory, the behavior of any passive scalar will be
similar to water vapor in an unstable atmosphere. Fur-
ther, this relationship should be tested over other sur-
faces and extended to stable conditions.

APPENDIX: LIST OF SYMBOLS

cp is the specific heat of air (J kg21 K21)
C1 is the height adjusted profile fitting constant
d is the displacement height (m)
g is the acceleration due to gravity (m s22)
h is the height of the canopy above ground (m)
k is the von Karman constant
K is the eddy diffusivity (m2 s21)
le is the latent heat of vaporization (J kg21)
L is the Obukhov length (m)
LE is the latent energy flux (W m22)
qs is the water vapor mixing ratio at the surface (kg kg21)
q(z) is the water vapor mixing ratio at height z (kg kg21)
u
*
is the friction velocity (m s22)

u is the downwind component (m s21)
v is the crosswind component (m s21)
w is the vertical wind component (m s21)
s 2

w is the variance in the vertical wind (m s22)
z0 is the surface roughness (m)
w9uv9 is the time-averaged virtual sensible heat flux (J m22 s21)
b is a profile fitting constant
L is the integral length scale (m)
uv is the virtual temperature (K)
j is the lag in space or time (m or s)
jro is the first zero crossing of the autocorrelation function (m

or s)
r is the air density (kg m23)
t is the integral time scale (s)
fw is the profile function for momentum
cv is the stability correction function for water vapor
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